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A novel approach to the theory of cyclic conjugation is proposed, which is 
free of some disadvantages of the previously used methods. It is shown that 
in the general case the effect of cyclic conjugation is an additive function of  
individual ring effects. 

An expression for the effect of an individual ring on tOtal ~-electron energy 
is obtained. Some difficulties of the theory are pointed out. 
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1. Introduction 

A general theory of cyclic conjugation has been recently developed, using the 
/x-polynomial technique [1]. The theory enabled the unification of some previously 
introduced concepts: topological resonance energy [2], effect of individual rings 
on total ~r-electron energy [3], M6bius systems [4] and other [5]. The/x-polynomial 
technique was applied [1] to several 7r-electron indices of conjugated hydrocar- 
bons such as total 7r-electron energy, charge density and bond order, and a few 
generally valid rules about their dependence on the cycles contained in the 
molecule have been deduced. In the present paper we shall reexamine the effect 
of cyclic conjugation on total ~--electron energy. Such a reexamination was 
necessary because of  the difficulties which have been recently pointed out by 
Herndon [6]. Namely, the zeros of the /x-polynomial may, in certain cases, be 
complex numbers. Therefore a formal application of the/x-polynomial technique 
may sometimes result in complex-valued individual ring effects [6], which, of 
course, are without any physical meaning. 
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The analysis given in the present work will show how these difficulties can be 
avoided, but will also exhibit the limitations of  the IX-polynomial technique. Our 
considerations, as well as those in Ref. [1], are graph-theoretical in nature and 
are, therefore, applicable within the framework of the Hiickel (topological) 
molecular orbital model. 

The theory of cyclic conjugation is essentially based on the following ideas. I f  a 
conjugated molecule G contains r cycles Zl, Z 2 , . . . ,  Z ,  then we associate a 
variable t~ (a real number) to each cycle Za, a = 1, 2 , . . . ,  r. The choice t~ = 1 
means that the effect of  Za is normally taken into account; the choice ta = 0 
means that the effect of  Z~ is fully disregarded. 

The parameters ta form a vector t = (tl, t 2 , . . . ,  tr). The IX-polynomial IX(G, t, x) 
is a polynomial  in the variable x, depending on t. I f  t = 1, then the IX-polynomial 
reduces to the characteristic polynomial ~b(G, x): 

IX(O,l,x)=~(G,x). 

In the present paper  we shall use the same symbolism as in Ref. [1], where the 
theory of the /z-polynomial is described in detail. In particular, we shall often 
need the following two abbreviations: if t~ = 0 for all a, then t = 0: if t~ = 1 for 
all a, then t = 1. 

I f a  (Hfickel) molecular orbital quantity J can be calculated from the characteristic 
polynomial  of  the molecular graph according to a mapping f :  

f: ck(G,x)-~ J-~ J(1), 

then we define the function J(t) via 

f: IX(G, t, x)-~ J(t). 

The quantity J ( t )  needs not to have any physical interpretation, except for t = 1. 
Moreover, for t # 1, J(t) may be complex valued. 

In a number  of  previous papers [2-5] it has been proposed (using, of  course, a 
different terminology) to measure the effect of  cyclic conjugation by a difference 
J(t A) -J ( tS ) ,  where t A and t B are two suitably chosen t-vectors. As a matter of  
fact, t A was always chosen to be equal to 1. In the TRE model [2] as well as in 
the papers [5], t B = 0. In the theory of MSbius systems [4] one has tab - - 1 if Z~ 
is a MSbius ring and t~ = I otherwise. In [3] the effect of  an individual ring Za 
on the total ~r-electron energy E has been defined as E ( 1 ) - E ( t B ) ,  where B ta = 0 
and tff = 1 for b # a. This latter definition, however, may lead to complex-valued 
results [6]. 

Hence we see that in the models proposed in Refs. [2-5] the calculated effect of  
cyclic conjugation depends on the value of the function J(t) in two different 
points. In at least one of these points J(t) has no sound physical meaning and 
therefore all the schemes given in [2-6] suffer from the well-known [7] disadvan- 
tages of  resonance-energy-like quantities. 
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Another  approach  to measuring the effect o f  cyclic conjugat ion would  be in 
selecting t A= I and choosing t R as close to 1 as possible. In this manner  we 
would  have to examine the funct ion J( t )  only in the ne ighborhood  of  the point  
1, hence in the ne ighborhood  of  the only point  in which J( t )  is a physically 
meaningful  quantity. By this approach  we shall overcome the difficulties men- 
t ioned above and in Ref. [6]. 

2. The local definition of the effect of cyclic conjugation 

In this section we derive some general properties o f  cyclic conjugat ion,  provided 
its effect is measured  according to the following " local"  definition. 

Definition A. Let t a = 1 and t A -  t B = ~ = (81, 8 2 , . . . ,  8r)  , and assume that the 
componen ts  of/5 are sufficiently small. Then the effect of  cyclic conjugat ion on 
J is determined by the behavior  o f  the funct ion J(t A) - J ( t B ) .  

We call this approach  to cyclic conjugat ion local because it is (explicitly) based 
on the behavior  o f  J( t )  at a single point,  namely at t = 1. Therefore  it differs 
essentially f rom the previously used non-local  models  [2-6], based on the behavior  
o f  J ( t )  at two distinct points. 

The above definition can be made more precise if we assume that in the neighbor- 
h o o d  of  the point  t = 1 the funct ion J( t )  can be presented in the form 

J(  t) = ~ [J~ . ( ~ ) h  +O(18~[h+,)l, (I) 
a 

where h is a certain exponent  which will be determined later on. From Eq. (1) 
is immediately  seen that  1 

j~ OJ(t) ,=1" --  O ( ~ a ) h  (2) 

N o w  we can extend Definition A as follows. 

Definition B. The (local) effect o f  an individual cycle Z~ on the quanti ty J is 
equal to j a  Eq. (2). 

For  reasons which will become clear later on, we shall say that J~ is an effect o f  
order  h -1. 

As a s t raightforward consequence of  Eq. (1) and the above definition, we have 
the fol lowing simple but  rather convenient  results. 

Note that in Ref. [1] an apparently similar quantity Ja has been considered, which is the partial 
derivative of J(t) at the point 0. However, the physical interpretation, the mathematical properties 
and the dependence on molecular topology of Ja and ja are completely different, and these two 
quantities should be strictly distinguished 
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Rule 1. According to the local approach, the effect of cyclic conjugation on any 
molecular orbital quantity is an additive function of individual ring contributions. 

Rule2. The joint (local) effect of all cycles on J is equal to j1 +j2+. . .  +jr. It 
is worth mentioning here that similar rules for non-locally.defined cyclic conjuga- 
tion effects hold only as rough approximations [1, 5, 8]. 

3. Effect of cyclic conjugation on total ~'-energy 

As a consequence of  Rule 1, it is sufficient to consider individual ring effects 
only. Let us therefore choose the vector 8 so that 8a = 8 and 8b = 0 for b ~ a. 
Then according to the results of Ref. [1], 

~(G,  t B, x) = 4,(G, x ) - 2 ~ ( G - Z o ,  x ) .  a. (3) 

Let xl, x 2 , . . . ,  xn be the zeros of the characteristic polynomial ~b(G, x) i.e. the 
eigenvalues of the graph G [9, 10]. The following consideration will be based 
upon the well=known result [9] that the H/ickel MO energy levels Ei of a 
conjugated molecule are related to the eigenvalues xl of the corresponding 
molecular graph as Ei = ~ + xi/3. If we express the MO energies in/3 units, then 
simply E~ = x~. The total ~r-electron energy E is then given by 

E = ~ gixi 
i=l 

where gi is the occupation number of  the i-th MO. 

Suppose first that the eigenvalue x~ is non-degenerate. Then (as shown in Appen- 
dix) the zero of /x (G,  t ' ,  x), Eq. (3), which corresponds to x~ is given by 

x, + 2 1 6 ( G -  Za, xi)/q~(l)(G, xi)]8 (4) 

with the error in the approximation (4) being of order 82. This means that a cycle 
Za has an effect of order one on a non-degenerate MO energy Ei. This effect (in 
/3 units) is given by 

E7 = 2 6 ( G - Z a ,  x,)/6(l)(G, x,). (5) 

E a is necessarily a real quantity. 

Rule 3. If  all the occupied MO's are non-degenerate, then the effect of a cycle 
Za on the total ~-electron energy E is of order one and is given by 

E a = 2 2 g i O ( G -  Za, Xi ) /cP( l ) (a ,  Xl) 
i 

with the summation going over all eigenvalues of the molecular graph. 

E"  is a real quantity, irrespective of the number of 7r-electrons and their distribu- 
tion in MO's. 

The case of  degenerate MO energy levels is somewhat more complicated. If the 
energy level E~ is doubly degenerate, then as a consequence of the theorem which 
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is given in the Appendix, the corresponding two zeros of /~(G,  t B, x) are 

X i + 2X/[q5 ( G  - Z,,, xi)/(/~(2)(G, Xi) ] " r (6a) 

x, - 2~/[q5 (G - Z~, x,)/d)(2)(G, x,)]" 6 (6b) 

and the error in (6) is of order 181. These two zeros are either both real or both 
complex, depending on the sign of the term [qS(G-Za,  xi)/4a(2)(G, x,)].  8. 

If  the degeneracy of the MO's is higher than two, then complex zeros of/x ( G, t B, x) 
necessarily occur, no matter how close are the points t B and 1. This follows from 
the theorem given in the Appendix and the fact that among the k-th root of every 
number there are at least k-2 complex roots. 

We conclude therefore that if a MO is doubly degenerate, then the (local) effect 
of cyclic conjugation on its energy may be complex valued. If, however, the MO 
is more than doubly degenerate, then the (local) effect of cyclic conjugation on 
its energy must be complex valued. 

If the MO is k-times degenerate, then the effect of a cycle on its energy is of 
order k. 

The occurrence of complex valued individual ring effects on molecular orbital 
energies is certainly a serious shortcoming of the/x-polynomial  technique, both 
in its local and non-local variant. The local approach has, however, the fortunate 
advantage that the effect of a ring on total ~--electron energy is a real quantity 
in all chemically relevant cases. The following rule holds. 

Rule  4. If the degenerate MO's are occupied with the same number (two or one 
or zero) of 7r-electrons, then the effect of a cycle Za on the total r 
energy is of order one and is given by 

E ~ = 2 Y / g ,  qS(G - Z , , ,  x ,) /ga( ')(G, x,) 
i 

with the summation going over all non-degenerate eigenvalues of the molecular 
graph. 

In order to prove Rule 4 consider an eigenvalue x~ of G which is k-times 
degenerate. Then according to Definition B and the result from the Appendix, 
the effect of Z~ on the k degenerate MO energy levels is given by the k different 
solutions E~ of the equation 

( E~)  k = - k ]  4)( G -  Z~, x~)/ 6 (k~( G, x,). 

By a well-known result of algebra, the sum of these solutions is zero, provided 
k > 1. Hence whenever the degenerate orbitals are occupied with equal numbers 
of electrons, the contributions to E a coming from the degenerate energy levels 
mutually cancel. Thus only the non-degenerate energy levels contribute to E ~ 
and their effect is of order one. Rule 4 follows. 

The only situation which is not covered by Rules 3 and 4 is when the number 
of rr electrons in a set of k degenerate molecular orbitals is neither 0 nor k nor 
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2k. Then the present method fails. However, in this case the Hfickel model is 
also completely inadequate to describe the electronic structure of the molecule. 
Therefore Rules 3 and 4 embrace all relevant electronic configurations. 

4, Concluding remarks 

Following the criticism of Herndon [6] we have revisited the /z-polynomial 
technique [1] for measuring the effect of cyclic conjugation and proposed a 
modification of  it. The main advantage of  this novel approach [s its local character, 
namely the auxiliary function J(t) has to be examined in a single point t = 1 only. 

In the local variant of the theory, the total effect of cyclic conjugation has been 
shown to be simply the sum of individual ring effects. 

A novel method for the calculation of the individual ring effects on total 7r-electron 
energy is proposed. Contrary to a previous method [3, 6], the present one always 
gives real-valued results. Exceptionally, our approach is not applicable to certain 
degenerate electronic states (where, however, the Hiickel model cannot be used 
either). 

The/z-polynomial  technique can be applied to molecular orbital energy levels, 
but reasonable results are obtained only in the non-degenerate case. It is not 
possible to avoid complex-valued ring effects on more than doubly degenerate 
MO energies. 

This seems to be an inevitable pitfall of  the graph-theoretical approach to cyclic 
conjugation and indicates the limits of its applicability. 

Acknowledgement. The author is grateful to Professor W. C. Herndon (El Paso) for helpful discussions. 

Appendix 

The theorem which we prove in this appendix is a generalization of a result from 
the book l11]. 

Let P(x) be a polynomial and Xo its zero, having algebraic multiplicity k(k >_ 1). 
Let P(i)(x) denote the i-th derivative of P(x). Let further Q(x) be another 
polynomial and u a parameter. 

If ]u] is sufficiently small, then the zeros of the polynomial P(x) +uQ(x) will lie 
near to the zeros of the polynomial P(x). A more precise localization of the zeros 
of P(x) + uQ(x) is given by the following theorem. 

Theorem. I f  pi, i = 1 , . . . ,  k are the k-th roots of the expression 

- u k  ! Q(xo)/p(k~(Xo), 

then the polynomial P(x)  + uQ(x) has k zeros of the form 

Xo+pi+O([ul2/k), i~  1 , . . . ,k .  



Cyclic conjugation 49 

Proof Def ine  a n o t h e r  p o l y n o m i a l  P(x )+zkQ(x )  a n d  let x(z) be  its zero. T h e n  

the  e q u a t i o n  

P(x(z) )  + zkQ(x(z))  = 0 (A- 1) 

ho lds  for  all  va lues  o f  z. Let x(z) has  b e e n  c h o s e n  so tha t  x (0)  = Xo. 

Fo r  Izl b e i n g  suff ic ient ly  smal l ,  o n e  can  e x p a n d  x(z) in  a p o w e r  series 

x ( z ) = x o + A '  z + B "  z 2 + . . .  

T h e n  o b v i o u s l y  

x ( z ) = x o + A ,  z+O(z 2) 

a n d  

A = Ox(z) I ( a - z )  
OZ I z=0 

Di f fe ren t ia te  the  i den t i t y  (A-  1) k t imes  wi th  respec t  to z a n d  t h e n  set z = 0. U s i n g  

Eq. (A-2 )  a n d  the  facts tha t  by  hypo thes i s  P(xo)= P<~)(Xo)=...= P(k-l~(Xo)=0 
a n d  p~k)(Xo) ~ O, we arr ive  to the  e q u a t i o n  

Akp(k)(Xo) 4- k! Q(xo) = O, 

f rom w h i c h  we c o n c l u d e  that  

x(z) = Xo +[ -k[  Q(xo)/ P(k)(Xo)] '/k" z +O(z2). 

The  t h e o r e m  fo l lows n o w  by  p u t t i n g  z k = u. 
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